5 #ifndef THUNDERSVM_SVC_H 6 #define THUNDERSVM_SVC_H 9 #include <thundersvm/kernelmatrix.h> 22 vector<float_type>
predict(
const DataSet::node2d &instances,
int batch_size)
override;
56 void probability_train(
const DataSet &dataset);
63 void multiclass_probability(
const vector<vector<float_type>> &r, vector<float_type> &p)
const;
68 vector<float_type> c_weight;
73 #endif //THUNDERSVM_SVC_H void train(const DataSet &dataset, SvmParam param) override
Definition: svc.cpp:40
void model_setup(const DataSet &dataset, SvmParam ¶m) override
Definition: svc.cpp:16
vector< float_type > predict(const DataSet::node2d &instances, int batch_size) override
Definition: svc.cpp:148
virtual void train_binary(const DataSet &dataset, int i, int j, SyncArray< float_type > &alpha, float_type &rho)
Definition: svc.cpp:117
Dataset reader.
Definition: dataset.h:14
params for ThunderSVM
Definition: svmparam.h:13
Abstract class for different SVM models.
Definition: svmmodel.h:18
SyncArray< float_type > rho
the bias term for each binary model
Definition: svmmodel.h:104
Support Vector Machine for classification.
Definition: svc.h:17